Coalescence on Supercritical Bellman-Harris Branching Processes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstruction of the Bellman-Harris branching

Consider the single-species, independent-particle, Bellman-Harris 9 branching process, defined by a progeny number distribution, and a particle 10 lifetime distribution. In this paper, we explore the existence and uniqueness of 11 the inverse problem, where one wishes to solve for the progeny number or lifetime 12 distribution given information about the total number distribution. Results 13 ar...

متن کامل

New Limiting Distributions for Bellman–harris Processes

We present a number of new solutions to an integral equation arising in the limiting theory of Bellman–Harris processes. The argument proceeds via straightforward analysis of Mellin transforms. We also derive a criterion for the analyticity of the Laplace transform of the limiting distribution on Re(u) ≥ −c for some c > 0.

متن کامل

Genealogy for Supercritical Branching Processes

We study the genealogy of so-called immortal branching processes, i.e. branching processes where each individual upon death is replaced by at least one new individual, and conclude that their marginal distributions are compound geometric. The result also implies that the limiting distributions of properly scaled supercritical branching processes are compound geometric. We exemplify our results ...

متن کامل

On Seneta’s Constants for the Supercritical Bellman-Harris Process with E(Z+ log Z+) = ∞

For a finite mean supercriticial Bellman-Harris process, let Zt be the number of particles at time t. There exist numbers χt (the Seneta constants) such that χtZt converges almost surely to a non-degenerate limit. Furthermore, χt ∝ e −βt L(e), where β is the Malthusian parameter, and L is slowly varying at zero. We obtain a characterisation of the slowly varying part of the Seneta constants und...

متن کامل

Stochastic Monotonicity and Continuity Properties of the Extinction Time of Bellman–harris Branching Processes: an Application to Epidemic Modelling

The aim of this paper is to study the stochastic monotonicity and continuity properties of the extinction time of Bellman–Harris branching processes depending on their reproduction laws. Moreover, we show their applications in an epidemiological context, obtaining an optimal criterion to establish the proportion of susceptible individuals in a given population that must be vaccinated in order t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Taiwanese Journal of Mathematics

سال: 2018

ISSN: 1027-5487

DOI: 10.11650/tjm/8123